zur Hauptnavigation springen zum Inhaltsbereich springen

BayWISS-Kolleg Digitalisierung www.baywiss.de

Projekte im Kolleg Digitalisierung

© Alexander Debieve '

AI-Generated Content Detection Using Multimodal Approaches

The increasing realism and availability of AI-generated content, particularly through tools like ChatGPT and Stable Diffusion, pose growing challenges in academia and healthcare. Students may submit theses partially or entirely written by AI, while synthetic medical reports threaten the reliability of documentation in clinical environments. This PhD project addresses the urgent need for robust and interpretable methods to distinguish AI-generated from human-authored content.

The core objective is to develop a multimodal detection system that integrates Natural Language Processing (NLP), Computer Vision, and Explainable AI (XAI). On the textual side, we analyze linguistic and stylometric features such as perplexity, lexical diversity, part-of-speech patterns, and readability indices using transformer-based classifiers. On the visual side, we detect AI-generated imagery using frequency-domain analysis, CNN-based classifiers, and techniques like PRNU and Error Level Analysis. The system introduces an AI Probability Score to move beyond binary classification, providing nuanced assessments of authenticity.

A custom dataset of pre-2022 academic reports and anonymized medical records, paired with AI-generated counterparts, will be constructed for robust training and evaluation. Explainability is a central theme, with techniques such as SHAP, Grad-CAM, and LIME ensuring that users can understand and trust the model’s decisions.

This research contributes to content integrity in sensitive domains, offering a scalable, transparent tool for universities, hospitals, and publishers to verify document authenticity and address emerging threats from synthetic media.

MITGLIED IM KOLLEG

seit

Betreuer Technische Universität München:

Prof. Dr. Björn Schuller

The Chair of Health Informatics at the Technical University of Munich combines computer science with modern medicine.
The research field is the sensor and knowledge-based monitoring and monitoring of all health-relevant parameters during sports and other activities.
The main interest lies in the recording, analysis and interpretation of biosignals, such as those that arise when monitoring heart activity, metabolism or neuronal activity. In addition, acoustic parameters (speech and other acoustic events) and visual parameters (face, gestures, body motor skills) are also processed in a realistic scenario (everyday life).

Betreutes Projekt:
AI-Generated Content Detection Using Multimodal Approaches

Betreuer Ostbayerische Technische Hochschule Regensburg:

Prof. Dr.-Ing. Johannes Reschke

Betreutes Projekt:
AI-Generated Content Detection Using Multimodal Approaches

Mohamed Mady

Mohamed Mady

Ostbayerische Technische Hochschule Regensburg

Koordination

Treten Sie mit uns in Kontakt. Wir freuen uns auf Ihre Fragen und Anregungen zum Verbundkolleg Digitalisierung.

Katharina Raab

Katharina Raab

Koordinatorin BayWISS-Verbundkolleg Digitalisierung

Julius-Maximilians-Universität Würzburg
Graduate Schools of Science and Technology
Beatrice-Edgell-Weg 21
97074 Würzburg

Telefon: +49 931 3180665
digitalisierung.vk [ at ] baywiss.de